# Interpretation of Surgical Specimen Radiographs for Pathology Residents: Breast

Ellen X Sun, MD (PGY-4 Radiology) Tom Richardson, MD, PhD (PGY-2 Pathology) Brigham and Women's Hospital

Thank you to Ellie Kwak, MD for the cases

# Learning Objectives

- Understand the importance of communication between pathologists and radiologists in evaluating breast specimens obtained with image guidance
- Recognize the importance of radiographic information (including reviewing specimen radiographs) in ensuring optimal pathologic evaluation
- Correlate the histopathologic findings with imaging and clinical findings, in regards to calcifications, masses, densities, architectural distortions and enhancing lesions

# Breast anatomy

- 1. Intercostal muscle
- 2. Pectoralis
- 3. Glandular tissue (lobules)
- 4. Nipple
- 5. Areola
- 6. Lactiferous ducts
- 7. Subcutaneous fat
- 8. Skin
- 9. Retromammary fat
- 10. Suspensory or Cooper's ligaments



# Mammographic appearance

- 1. Intercostal muscle
- 2. Pectoralis
- 3. Glandular tissue (lobules)
- 4. Nipple
- 5. Areola
- 6. Lactiferous ducts
- 7. Subcutaneous fat
- 8. Skin
- 9. Retromammary fat
- 10. Suspensory or Cooper's ligaments





# Brief intro on mammography



# Standard mammographic views

• CC – craniocaudal





© Mosby, Inc



Breast Imaging by D. B. Kopans, 1998

# Standard mammographic views

• MLO – mediolateral oblique



Breast Imaging by D. B. Kopans, 1998



© Mosby, Inc



# Abbreviated overview on BIRADS

- Breast Imaging and Reporting Data System (BIRADS)
- A lexicon for standardizing mammography reports
  - Also BIRADS for ultrasound, MRI reporting...

# Mammographic masses

- Mass =
  - 3-dimensional and occupies space
  - Seen on two different mammographic projections
  - Convex borders



# Mammographic masses

• Margins



# Mammographic masses

• Density



# Mammographic <u>calcifications</u>

• Typically benign





Large rod-like



CC

Round



Coarse or "popcorn-like"



Dystrophic



Large, irregular

Milk of calcium



Suture



# Mammographic <u>calcifications</u>

### • Suspicious

### Amorphous



Too small or hazy to tell details

### Fine pleomorphic



### < 0.5 mm Vary in shape and size Dot-dash appearance

### Coarse heterogeneous



### > 0.5 mm

### Fine linear or finelinear branching



# Mammographic <u>calcifications</u>



### Ţ

# Architectural distortion

- Linear spiculations radiating from a common point, with no visible mass
- Due to focal breast tissue disruption
- DDx: malignancy vs. scar





- Focal asymmetry  $\rightarrow$  Involving less than one quadrant, seen on two views
- Global asymmetry  $\rightarrow$  involving the majority of <u>one</u> breast only (more than one quadrant)
- Developing asymmetry  $\rightarrow$  focal asymmetry that is new or increasing in size
  - Suspicious for malignancy

# **BIRADS** assessment categories

- O: need additional imaging (only for screening mammo)
- 1: negative (normal breast)
- 2: benign (no follow-up needed)
- 3: probably benign (<2% risk of malignancy)</li>
  - Short term follow-up
- 4: suspicious (2-95% risk of malignancy)
  - 4A low suspicion (2-10%)
  - 4B moderate suspicion (10-50%)
  - 4C high suspicion (50-95%)
- 5: highly suggestive of malignancy (>95% risk)
- 6: known biopsy-proven malignancy



### **I**

# Case 1

Questioned right breast calcifications on recent screening mammogram.



Mammogram (magnification views)

Heterogeneous calcs + irregular mass

BIRADS 4C suspicious (high suspicion)

Recommend ultrasound-guided core biopsy

• Path = invasive lobular carcinoma





**Targeted ultrasound** 



RIGHT 9:00 N + 10-11CM RADIAL

RIGHT 9:00 N + 10-11CM RADIAL



Radioactive seed localization for surgical guidance

Target = marker clip placed after biopsy (small cylindrical clip)

The other two clips are from benign biopsies (larger cylindrical clip, barbell-shaped clip)

# Biopsy marker clips

| CLIPS - SHAPES |                         |                        |             |                     |  |
|----------------|-------------------------|------------------------|-------------|---------------------|--|
| A. Coil        | B. Letters              | C. Rod, cylinder, cork | D. Ribbon   | E. Bow tie          |  |
|                | RS                      |                        |             |                     |  |
| F. Wing        | G. Barbell or hourglass | H. Heart               | I. Infinity | J. Trafic signal    |  |
|                |                         | PI                     |             |                     |  |
| K. Top hat     | L. Buckle               | M. MicroMark           | N. Name?    | O. Radioactive seed |  |
|                |                         |                        | S           |                     |  |

# Biopsy marker clips

| Photographic<br>Appearance | Mammographic<br>Appearance | Shape      |
|----------------------------|----------------------------|------------|
|                            |                            | Cork       |
| L                          |                            | "U" shaped |
| 0                          | D                          | "Q" shaped |
| 0                          |                            | Ring       |
| 8                          | Å.                         | Ribbon     |
| -                          | 1700                       | Top hat    |

ed





# Radioactive seed localization for surgical guidance





# Lumpectomy surgical specimen radiograph (PACS\*\*)





\*\*with compression

# Specimen radiograph (path)

A specimen radiograph is obtained and archived in Pathology which shows a cylinder-shaped biopsy clip associated with a mass and confirms removal of the radioactive seed.



# Pathology report

- RIGHT BREAST, SEED LUMPECTOMY AND SENTINEL LYMPH NODE:
  - INVASIVE LOBULAR CARCINOMA, well differentiated (1.0 cm)
  - No LVI
  - LOBULAR CARCINOMA IN SITU
  - Negative sentinel lymph node
  - Negative margins
  - Residual cellularity 5% in 1.2 x 1.0 cm tumor bed
  - RCB-I
  - AJCC ypT1b N0(sn)
  - ER+, PR-, HER2 FISH +

# Case 2

Questioned left breast mass on recent screening mammogram.

### Spot compression views



Spot compression views



 $\mathbf{C}$ 

3.0-

MLO

BIRADS 5 (highly suggestive of malignancy, >95% risk)

Recommend ultrasound-guided core biopsy

X

Path = invasive ductal carcinoma

# Ultrasound-guided seed localization





LEFT 6:00 N + 1-2 cm Trans Post SEED

# Post-seed mammograms

lateral

[™ LCC]

nipple

Target: Dominant 1.2cm mass with a ribbon clip. Adjacent smaller mass will be taken out in a single specimen Number of Radioseeds: 1

LS/EK

medial

inferior

superior

[<sup>c</sup> LLM]

nipple

# Specimen radiograph (PACS)



# Specimen radiograph (path)

Shows a ribbon-shaped biopsy clip associated with a dominant solid mass and confirms removal of the radioactive seed.

\*\*ribbon clip was present in specimen though obscured by
the paperclip



# Pathology report

- INVASIVE DUCTAL CARCINOMA, moderately differentiated (0.9 cm)
- No LVI
- DUCTAL CARCINOMA IN SITU, solid and cribriform types (intermediate nuclear grade) present in 5 of 6 blocks
- Negative margins
- Core biopsy site
- Negative sentinel lymph nodes

### **I**

# Case 3

Left breast DCIS diagnosed at outside hospital. Here for second opinion.

### Left breast, LM projection

8 mm (Act

# Are we done?

Bowtie clip surrounded by <u>fine linear branching</u> <u>pleomorphic calcs</u>, in keeping with biopsy-proven DCIS

Density = postprocedural hematoma



## Left breast, LM projection

48 mm (Act)



Superior to the biopsy site, group of amorphous / pleomorphic calcs

BIRADS 4B suspicious (moderate suspicion)

**Biopsy recommended** 

Path = atypical ductal hyperplasia (ADH) for which excision was recommended

## Left breast, LM

48 mm (Act)

## Localization planning for surgical excision

Post-biopsy

Wire localization using a lateral approach -SR/EK

Two Radioseeds to be placed at the anterior and posterior margins o f the calcs -SR/EK

# Specimen radiographs (PACS)

### Lumpectomy site 2 (inferior)

Left breast





# Specimen radiograph (path)

Left 2:00, cylinder clip, wire loc

Shows a cylinder-shaped biopsy clip and a localization wire associated with amorphous calcifications.

### Lumpectomy site 1 (superior)

### Ę

# Specimen radiograph (path)

Left 5:00, bowtie clip, bracketed seed loc

Shows a bowtie-shaped biopsy clip associated with a dominant solid mass and confirms removal of the radioactive seeds.

### Lumpectomy site 2 (inferior)



# Specimen radiograph (path)

Left 5:00, bowtie clip in cassette



## Right breast

Punctate calcs (BIRADS 4A) → Stereotactic core biopsy with placement of T-shaped clip

Path = ADH

Radioseed localization for excisional biopsy



# Specimen radiograph (PACS)



# Specimen radiograph (path)

Right, T clip, seed loc, no clip in specimen

Shows calcifications, confirms removal of the radioactive seed, and demonstrates no biopsy clip present in the specimen, in agreement with the post-operative radiograph reviewed in Centricity.

Final path = DCIS with positive margins



Ę

# Radioseed localization to T-shaped clip prior to re-excision



Lateral

superior

# Specimen radiograph (PACS)



# Pathology report

- LEFT BREAST 5:00, SEED LOCALIZED EXCISION:
  - DUCTAL CARCINOMA IN SITU, solid type (intermediate nuclear grade), with comedo necrosis and calcifications (7 of 9 blocks)
  - Atypical lobular hyperplasia
  - Biopsy site changes are present
- LEFT BREAST 2:00, WIRE LOCALIZED EXCISION:
  - Atypical ductal hyperplasia associated with calcifications
  - Biopsy site changes are present
- **RIGHT** BREAST 10:00, SEED LOCALIZED EXCISION:
  - DUCTAL CARCINOMA IN SITU, clinging type (intermediate to high nuclear grade), with necrosis and without calcifications (3 of 14 blocks)
  - In situ carcinoma is <0.1 cm from the anterior margin and >0.2 cm from all other margins
  - Biopsy site changes are not present

# Summary approach to specimen radiograph

- Check pre-op imaging for targeted lesion +/- clips/seeds
  - Mass, calcs, architectural distortion, MRI enhancement
- Check compressed specimen radiograph in PACS
- Obtain specimen radiograph

# Summary approach to specimen radiograph

- Gross description of specimen radiograph
  - Target is present?
  - Mass  $\rightarrow$  shape, density
  - Calcs  $\rightarrow$  distribution, appearance
  - Clip  $\rightarrow$  shape
  - Radioseed  $\rightarrow$  removed in Frozen Section Room?
- Important for billing to include
  (1)Whether radiograph was taken in path lab
  (2)Pathologist interpretation
  (3)Radiology interpretation

- Section specimen
  - Document which cassettes contain the biopsy clip (if present)
  - When possible, section specimen that contain multiple clips so that only one clip goes in each cassette

# References

- Statdx.com
- http://www.radiologyassistant.nl/en/p53b4082c92130/bi-rads-for-mammography-andultrasound-2013.html
- Mandell J. *Core Radiology: A Visual Approach to Diagnostic Imaging.* Cambridge: Cambridge University Press; 2013.
- D'Orsi C, Sickles EA, Mendelson EB, Morris EA. *Breast Imaging Reporting and Data System: ACR BI-RADS breast imaging atlas*. 5th ed. Reston, Va: American College of Radiology, 2013.
- Wienbeck S. et al. Artifacts Caused by Breast Tissue Markers in a Dedicated Cone-beam Breast CT in Comparison to Full-field Digital Mammography. Academic Radiology, Volume 24, Issue 7, 908 – 915.
- Denison CM, Lester SC. "Essential Components of a Successful Breast Core Needle Biopsy Program: Imaging Modalities, Sampling Techniques, Specimen Processing, Radiologic/Pathologic Correlation, and Appropriate Follow-Up" chapter in: Shin J. (ed.), A Comprehensive Guide to Core Needle Biopsies of the Breast, DOI 10.1007/978-3-319-26291-8\_1