The Nucleus and Radioactive Decay

Stephen C. Moore, Ph.D.

Nuclear Medicine Division Department of Radiology Brigham & Women's Hospital Harvard Medical School Boston, Massachusetts

Reminder: Concept from Special Relativity

Total energy of a particle = rest-mass energy + kinetic energy

$$E = m_o c^2 + Q$$

- Mass energy of an electron or positron = 511 keV
- Mass energy of a proton = 938.3 MeV
- Mass energy of a neutron = 939.6 MeV
- Mass of a photon (quantum of E.M. radiation) = 0
- Mass of a neutrino (weakly interacting particle) ~ 0

Reminder: Atomic Energy Levels

- Energy levels of atomic electrons are **quantized**.
- Pauli exclusion principle determines max. number per shell

Reminder: Standard Notation and Definitions

(ABR core study guide 17.a.i)

Example: Stable gold.

 ${}^{197}_{79}$ Au₁₁₈ 79 protons (Z), 118 neutrons (N), 197 nucleons (A)

Isotopes, Isotones, Isobars:

Isotopes: Same number of protons, e.g., ${}^{12}_{6}\mathbf{C}$ and ${}^{14}_{6}\mathbf{C}$ **Isotones**: Same number of <u>neutrons</u>, e.g., ${}^{14}_{6}\mathbf{C}$ and ${}^{15}_{7}\mathbf{N}$ **Isobars**: Same number of <u>nucleons</u>, e.g., ${}^{15}_{8}\mathbf{O}$ and ${}^{15}_{7}\mathbf{N}$

Key points: Nuclear Energy Levels and Transitions

- Nuclear energy levels are also quantized.
- Interpretation is more complex than for atomic levels.
- Electromagnetic and Strong Force compete with each other.
- Most stable arrangement of nucleons yields ground state.
- Excited states are unstable. Generally very short lifetimes before transformation to some other state.

• Metastable states are unstable, but have a long lifetime before transformation. Also called <u>isomeric states</u>. One or more <u>gamma rays</u> are often emitted when a metastable state decays to a more stable state. X-rays arise from <u>atomic</u> transitions, whereas gamma rays arise from <u>nuclear</u> transitions.

• ^{99m}Tc (metastable) and ⁹⁹Tc are isomers of each other.

• 10⁻¹² seconds is approximate transition from unstable to metastable.

Modes of Radioactive Decay

- Nuclear stability and general concepts
- Effects on chemistry
- β^- emission
- $\beta^- + \gamma$ emission
- isomeric transition and internal conversion
- electron capture (EC)
- β^+ decay and competition with EC
- α decay

(From: http://ec.europa.eu/research/energy/fi/fi_bs/article_1172_en.htm)

Nuclear Stability (ABR core study guide 17.a.ii)

- 1. N ~ Z for low Z, stable elements (e.g., ${}_{6}^{12}C$).
- 2. N ~ 1.5 Z for heavy stable elements (e.g.,²¹⁶₈₃Bi).
 - Extra neutrons required to overcome repulsive forces from large number of protons in heavy nuclei.
- 3. If N > line-of-stability, nucleus is <u>proton deficient</u>:

 $\rightarrow \beta^{-}$ decay likely $(n^{\circ} \rightarrow p^{+} + \beta^{-} + \overline{\nu})$

- If N < line-of-stability, nucleus is <u>neutron deficient</u>. $\rightarrow \beta^+$ decay likely $(p^+ \rightarrow n^o + \beta^+ + \nu)$ (electron capture also likely)
- 4. Even-even nuclei more stable; odd-odd least stable (165 stable e-e, 109 stable e-o; only 4 stable o-o nuclei)
- 5. More tightly bound nuclei (high E_b/A) generally more stable.

Radioactivity: General concepts (ABR core study guide 17.a.iii)

- 1. Terminology: radioactive nucleus = parent; product = daughter.
- 2. Radioactive decay is **spontaneous** (exact moment not predictable).
- 3. Mass -> Mass + Energy (Q) in radioactive decay (atomic masses)
- 4. Radionuclide (generally preferred term) vs. radioisotope.
- 5. Unique properties of radionuclides:
 - mode of decay and energies of all emissions
 - lifetime (half-life) and transition energy (Q).

Chemistry Considerations

- Chemical reactions usually involve outermost orbital electrons.
- Radioactive decay primarily involves the nucleus.
- Can generally substitute any isotope (stable or radioactive) in a molecule or in a given chemical reaction.
- Minor exceptions:
 - 1. Isotope effect (purely a mass effect; radioactivity irrelevant)
 - 2. Orbital binding energies can be altered a little by molecular interactions. Therefore, half-life of decays involving orbital electrons can be altered.

Decay by β - emission (ABR core study guide 17.b.iii(a))

Decay by (β^{-}, γ) emission (ABR core study guide 17.b.i and 17.b.iii(a)) $(n^{\circ} \rightarrow p^{+} + \beta^{-} + \overline{\nu})$ $\stackrel{A}{_{Z}} X \stackrel{\beta^{-}}{\longrightarrow} \stackrel{A}{_{Z}+1} Y^{*} \stackrel{\gamma}{\longrightarrow} \stackrel{A}{_{Z}+1} Y$

Another nuclear medicine example: ¹³¹I

Isomeric Transition (IT) and Internal Conversion (IC)

(ABR core study guide 17.b.iv)

$${}^{A}_{Z+1}Y^* \xrightarrow{\gamma} {}^{A}_{Z+1}Y$$

metastable state

(no change in Z)

K-shell conversion yield $\alpha_{\rm K} = \text{prob}(\text{ce-K})/\text{prob}(\gamma)$

(Internal conversion is followed by emission of characteristic x-rays and/ or Auger electrons.)

Decay by electron capture (EC) (ABR core study guide 17.b.iii(c))

EC nuclear medicine examples: ⁶⁷Ga, ¹¹¹In, ¹²³I, ²⁰¹Tl

Decay by positron emission (ABR core study guide 17.b.iii(b))

Another nuclear medicine example: ¹³N

Competitive β^+ and EC decay

(ABR core study guide 17.b.iii(b) and 17.b.iii(c))

Another nuclear medicine example: ¹¹C

Decay by α -particle emission

(ABR core study guide 17.b.ii))

 ${}^{A}_{Z}X \xrightarrow{\alpha} {}^{A-4}_{Z-2}Y$

(Some α -emitters may be useful for radiation therapy.)